Central nervous system pericytes in health and disease

  • Zlokovic, B.V. Neurovascular mechanisms of Alzheimer's neurodegeneration. Trends Neurosci. 28, 202–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Tsai, P.S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels. J. Neurosci. 29, 14553–14570 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moskowitz, M.A., Lo, E.H. & Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron 67, 181–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic, B.V. New therapeutic targets in the neurovascular pathway in Alzheimer's disease. Neurotherapeutics 5, 409–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlokovic, B.V. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Weiss, N., Miller, F., Cazaubon, S. & Couraud, P.O. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim. Biophys. Acta 1788, 842–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Armulik, A. et al. Pericytes regulate the blood-brain barrier. Nature 468, 557–561 (2010). This study demonstrates the role of pericytes in the maintenance of the blood-brain barrier and vascular density in vivo during adulthood.

    Article  CAS  PubMed  Google Scholar 

  • Daneman, R., Zhou, L., Kebede, A.A. & Barres, B.A. Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 468, 562–566 (2010). This study describes the role of pericytes in the formation of blood-brain barrier in vivo during embryonic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, R.D. et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 68, 409–427 (2010). This study not only describes the role of pericytes in maintaining in vivo blood-brain barrier integrity, microvascular density and functional hyperemia during adulthood and brain aging but also shows that a primary loss of pericytes may lead to two parallel pathways of neurodegeneration, blood-brain barrier breakdown and hypoperfusion, which lead to secondary neurodegenerative changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peppiatt, C.M., Howarth, C., Mobbs, P. & Attwell, D. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006). This study demonstrates constriction of pericytes in response to chemical or electrical stimulation, suggesting that active neurons may directly send signals to pericytes to induce local blood flow changes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz-Flores, L. et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol. Histopathol. 24, 909–969 (2009).

    PubMed  Google Scholar 

  • Stratman, A.N., Malotte, K.M., Mahan, R.D., Davis, M.J. & Davis, G.E. Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood 114, 5091–5101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt, H., Wolburg, H. & Redies, C. N-cadherin mediates pericytic-endothelial interaction during brain angiogenesis in the chicken. Dev. Dyn. 218, 472–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Li, F. et al. Endothelial Smad4 maintains cerebrovascular integrity by activating N-cadherin through cooperation with Notch. Dev. Cell 20, 291–302 (2011). This study shows the in vivo role of TGF-β and Notch signaling in the cooperative regulation of N-cadherin expression, pericyte-endothelial attachment and the prevention of perinatal hemorrhage.

    Article  CAS  PubMed  Google Scholar 

  • Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Lack of smad or notch leads to a fatal game of brain pericyte hopscotch. Dev. Cell 20, 279–280 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Bobbie, M.W., Roy, S., Trudeau, K., Munger, S.J. & Simon, A.M. Reduced connexin 43 expression and its effect on the development of vascular lesions in retinas of diabetic mice. Invest. Ophthalmol. Vis. Sci. 51, 3758–3763 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew, S.S., Johnson, C.S., Green, C.R. & Danesh-Meyer, H.V. Role of connexin43 in central nervous system injury. Exp. Neurol. 225, 250–261 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Shepro, D. & Morel, N.M. Pericyte physiology. FASEB J. 7, 1031–1038 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Bautch, V.L. & James, J.M. Neurovascular development: the beginning of a beautiful friendship. Cell Adh. Migr. 3, 199–204 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Etchevers, H.C., Vincent, C., Le Douarin, N.M. & Couly, G.F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128, 1059–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Korn, J., Christ, B. & Kurz, H. Neuroectodermal origin of brain pericytes and vascular smooth muscle cells. J. Comp. Neurol. 442, 78–88 (2002).

    Article  PubMed  Google Scholar 

  • Kurz, H. Cell lineages and early patterns of embryonic CNS vascularization. Cell Adh. Migr. 3, 205–210 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hellström, M., Kalen, M., Lindahl, P., Abramsson, A. & Betsholtz, C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126, 3047–3055 (1999).

    Article  PubMed  Google Scholar 

  • Abramsson, A. et al. Defective N-sulfation of heparan sulfate proteoglycans limits PDGF-BB binding and pericyte recruitment in vascular development. Genes Dev. 21, 316–331 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenzel, D. et al. Peripheral mural cell recruitment requires cell-autonomous heparan sulfate. Blood 114, 915–924 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Ozerdem, U. & Stallcup, W.B. Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6, 241–249 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozerdem, U. & Stallcup, W.B. Pathological angiogenesis is reduced by targeting pericytes via the NG2 proteoglycan. Angiogenesis 7, 269–276 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratman, A.N., Schwindt, A.E., Malotte, K.M. & Davis, G.E. Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116, 4720–4730 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piquer-Gil, M., Garcia-Verdugo, J.M., Zipancic, I., Sanchez, M.J. & Alvarez-Dolado, M. Cell fusion contributes to pericyte formation after stroke. J. Cereb. Blood Flow Metab. 29, 480–485 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Lamagna, C. & Bergers, G. The bone marrow constitutes a reservoir of pericyte progenitors. J. Leukoc. Biol. 80, 677–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Kokovay, E., Li, L. & Cunningham, L.A. Angiogenic recruitment of pericytes from bone marrow after stroke. J. Cereb. Blood Flow Metab. 26, 545–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Gaengel, K., Genove, G., Armulik, A. & Betsholtz, C. Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler. Thromb. Vasc. Biol. 29, 630–638 (2009). Comprehensive review describing bidirectional endothelial cell–pericyte signal transduction.

    Article  CAS  PubMed  Google Scholar 

  • Lindahl, P., Johansson, B.R., Leveen, P. & Betsholtz, C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277, 242–245 (1997). Pioneering study using pericyte-deficient mice demonstrating microvascular instability and aneurysm formation in embryonic neural tube.

    Article  CAS  PubMed  Google Scholar 

  • Tallquist, M.D., French, W.J. & Soriano, P. Additive effects of PDGF receptor beta signaling pathways in vascular smooth muscle cell development. PLoS Biol. 1, e52 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levéen, P. et al. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 8, 1875–1887 (1994).

    Article  PubMed  Google Scholar 

  • Soriano, P. Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev. 8, 1888–1896 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Lindblom, P. et al. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev. 17, 1835–1840 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjarnegård, M. et al. Endothelium-specific ablation of PDGFB leads to pericyte loss and glomerular, cardiac and placental abnormalities. Development 131, 1847–1857 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Enge, M. et al. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 21, 4307–4316 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrae, J., Gallini, R. & Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22, 1276–1312 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abramsson, A., Lindblom, P. & Betsholtz, C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J. Clin. Invest. 112, 1142–1151 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkler, E.A., Bell, R.D. & Zlokovic, B.V. Pericyte-specific expression of PDGF beta receptor in mouse models with normal and deficient PDGF beta receptor signaling. Mol. Neurodegener. 5, 32 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geraldes, P. et al. Activation of PKC-δ and SHP-1 by hyperglycemia causes vascular cell apoptosis and diabetic retinopathy. Nat. Med. 15, 1298–1306 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sieczkiewicz, G.J. & Herman, I.M. TGF-beta 1 signaling controls retinal pericyte contractile protein expression. Microvasc. Res. 66, 190–196 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Lebrin, F., Deckers, M., Bertolino, P. & Ten Dijke, P. TGF-beta receptor function in the endothelium. Cardiovasc. Res. 65, 599–608 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Walshe, T.E. et al. TGF-beta is required for vascular barrier function, endothelial survival and homeostasis of the adult microvasculature. PLoS ONE 4, e5149 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braun, A. et al. Paucity of pericytes in germinal matrix vasculature of premature infants. J. Neurosci. 27, 12012–12024 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinukonda, G. et al. Effect of prenatal glucocorticoids on cerebral vasculature of the developing brain. Stroke 41, 1766–1773 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho, R.L.C. et al. Compensatory signalling induced in the yolk sac vasculature by deletion of TGFβ receptors in mice. J. Cell Sci. 120, 4269–4277 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Van Geest, R.J., Klaassen, I., Vogels, I.M., Van Noorden, C.J. & Schlingemann, R.O. Differential TGF-β signaling in retinal vascular cells: a role in diabetic retinopathy? Invest. Ophthalmol. Vis. Sci. 51, 1857–1865 (2010).

    Article  PubMed  Google Scholar 

  • Paik, J.H. et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev. 18, 2392–2403 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goumans, M.J. et al. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 21, 1743–1753 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dohgu, S. et al. Brain pericytes contribute to the induction and up-regulation of blood-brain barrier functions through transforming growth factor-beta production. Brain Res. 1038, 208–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Saunders, W.B. et al. Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J. Cell Biol. 175, 179–191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharinen, P. et al. Angiopoietins assemble distinct Tie2 signalling complexes in endothelial cell-cell and cell-matrix contacts. Nat. Cell Biol. 10, 527–537 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Wakui, S. et al. Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation in rat angiogenesis. Lab. Invest. 86, 1172–1184 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Jeansson, M. et al. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Invest. 121, 2278–2289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann, J.J. & Iruela-Arispe, M.L. Notch signaling in blood vessels: who is talking to whom about what? Circ. Res. 100, 1556–1568 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Liu, H., Kennard, S. & Lilly, B. NOTCH3 expression is induced in mural cells through an autoregulatory loop that requires endothelial-expressed JAGGED1. Circ. Res. 104, 466–475 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Zhang, W., Kennard, S., Caldwell, R.B. & Lilly, B. Notch3 is critical for proper angiogenesis and mural cell investment. Circ. Res. 107, 860–870 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regan, J.N. & Majesky, M.W. Building a vessel wall with notch signaling. Circ. Res. 104, 419–421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart, K.S., Zhou, Z., Zweidler-McKay, P. & Kleinerman, E.S. Delta-like ligand 4-Notch signaling regulates bone marrow-derived pericyte/vascular smooth muscle cell formation. Blood 117, 719–726 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walshe, T.E. et al. Microvascular retinal endothelial and pericyte cell apoptosis in vitro: role of Hedgehog and Notch signaling. Invest. Ophthalmol. Vis. Sci. 52, 4472–4483 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Jin, S. et al. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells. Circ. Res. 102, 1483–1491 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Quaegebeur, A., Segura, I. & Carmeliet, P. Pericytes: blood-brain barrier safeguards against neurodegeneration? Neuron 68, 321–323 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Paul, J., Strickland, S. & Melchor, J.P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J. Exp. Med. 204, 1999–2008 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, B., Cheng, Q., Yang, K. & Lyden, P.D. Thrombin mediates severe neurovascular injury during ischemia. Stroke 41, 2348–2352 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Mhatre, M. et al. Thrombin, a mediator of neurotoxicity and memory impairment. Neurobiol. Aging 25, 783–793 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z.L. & Strickland, S. Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91, 917–925 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Zhong, Z. et al. ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat. Neurosci. 11, 420–422 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, Z. et al. Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells. J. Clin. Invest. 119, 3437–3449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellström, M. et al. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J. Cell Biol. 153, 543–553 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ballabh, P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr. Res. 67, 1–8 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Virgintino, D. et al. An intimate interplay between precocious, migrating pericytes and endothelial cells governs human fetal brain angiogenesis. Angiogenesis 10, 35–45 (2007).

    Article  PubMed  Google Scholar 

  • Candelario-Jalil, E., Yang, Y. & Rosenberg, G.A. Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia. Neuroscience 158, 983–994 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Dore-Duffy, P. et al. Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res. 60, 55–69 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Darland, D.C. et al. Pericyte production of cell-associated VEGF is differentiation-dependent and is associated with endothelial survival. Dev. Biol. 264, 275–288 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314, 15–23 (2003).

    Article  PubMed  Google Scholar 

  • Kamouchi, M. et al. Calcium influx pathways in rat CNS pericytes. Brain Res. Mol. Brain Res. 126, 114–120 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Hamilton, N.B., Attwell, D. & Hall, C.N. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics 2, 5 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirase, H., Creso, J., Singleton, M., Bartho, P. & Buzsaki, G. Two-photon imaging of brain pericytes in vivo using dextran-conjugated dyes. Glia 46, 95–100 (2004).

    Article  PubMed  Google Scholar 

  • Chow, N. et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer's phenotype. Proc. Natl. Acad. Sci. USA 104, 823–828 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yemisci, M. et al. Pericyte contraction induced by oxidative-nitrative stress impairs capillary reflow despite successful opening of an occluded cerebral artery. Nat. Med. 15, 1031–1037 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Klett, F., Offenhauser, N., Dirnagl, U., Priller, J. & Lindauer, U. Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain. Proc. Natl. Acad. Sci. USA 107, 22290–22295 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Iadecola, C. Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat. Rev. Neurosci. 5, 347–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Zachariah, M.A. & Cyster, J.G. Neural crest-derived pericytes promote egress of mature thymocytes at the corticomedullary junction. Science 328, 1129–1135 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verbeek, M.M., Westphal, J.R., Ruiter, D.J. & de Waal, R.M. T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J. Immunol. 154, 5876–5884 (1995).

    PubMed  Google Scholar 

  • Dore-Duffy, P., Katychev, A., Wang, X. & Van Buren, E. CNS microvascular pericytes exhibit multipotential stem cell activity. J. Cereb. Blood Flow Metab. 26, 613–624 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Hammes, H.P., Feng, Y., Pfister, F. & Brownlee, M. Diabetic retinopathy: targeting vasoregression. Diabetes 60, 9–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gariano, R.F. & Gardner, T.W. Retinal angiogenesis in development and disease. Nature 438, 960–966 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Hammes, H.P. et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53, 1104–1110 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Pfister, F. et al. Retinal overexpression of angiopoietin-2 mimics diabetic retinopathy and enhances vascular damages in hyperglycemia. Acta Diabetol. 47, 59–64 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Farkas, E. & Luiten, P.G. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog. Neurobiol. 64, 575–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z. et al. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat. Med. 11, 959–965 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Vinters, H.V. et al. Microvasculature in brain biopsy specimens from patients with Alzheimer's disease: an immunohistochemical and ultrastructural study. Ultrastruct. Pathol. 18, 333–348 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, H.M., Wegiel, J., Wang, K.C. & Lach, B. Ultrastructural studies of the cells forming amyloid in the cortical vessel wall in Alzheimer's disease. Acta Neuropathol. 84, 117–127 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Wilhelmus, M.M. et al. Lipoprotein receptor-related protein-1 mediates amyloid-beta-mediated cell death of cerebrovascular cells. Am. J. Pathol. 171, 1989–1999 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iadecola, C. et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat. Neurosci. 2, 157–161 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Niwa, K. et al. Aβ1–40-related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc. Natl. Acad. Sci. USA 97, 9735–9740 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell, R.D. et al. SRF and myocardin regulate LRP-mediated amyloid-β clearance in brain vascular cells. Nat. Cell Biol. 11, 143–153 (2009).

    Article  CAS  PubMed  Google Scholar