Why do RNA viruses recombine?

  • Holmes, E. C. The Evolution and Emergence of RNA Viruses (Oxford Univ. Press, New York, 2009).

    Google Scholar 

  • Brown, D. W. Threat to humans from virus infections of non-human primates. Rev. Med. Virol. 7, 239–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Gibbs, M. J. & Weiller, G. F. Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc. Natl Acad. Sci. USA 96, 8022–8027 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khatchikian, D., Orlich, M. & Rott, R. Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340, 156–157 (1989).

    Article  CAS  PubMed  Google Scholar 

  • Malim, M. H. & Emerman, M. HIV-1 sequence variation: drift, shift, and attenuation. Cell 104, 469–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Nora, T. et al. Contribution of recombination to the evolution of human immunodeficiency viruses expressing resistance to antiretroviral treatment. J. Virol. 81, 7620–7628 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai, M. M. RNA recombination in animal and plant viruses. Microbiol. Rev. 56, 61–79 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aaziz, R. & Tepfer, M. Recombination in RNA viruses and in virus-resistant transgenic plants. J. Gen. Virol. 80, 1339–1346 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Breyer, W. A. & Matthews, B. W. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Hippel, P. H., Fairfield, F. R. & Dolejsi, M. K. On the processivity of polymerases. Ann. NY Acad. Sci. 726, 118–131 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Baird, H. A. et al. Sequence determinants of breakpoint location during HIV-1 intersubtype recombination. Nucleic Acids Res. 34, 5203–5216 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galetto, R., Giacomoni, V., Véron, M. & Negroni, M. Dissection of a circumscribed recombination hot spot in HIV-1 after a single infectious cycle. J. Biol. Chem. 281, 2711–2720 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J. & Temin, H. M. Retrovirus recombination depends on the length of sequence identity and is not error prone. J. Virol. 68, 2409–2414 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Worobey, M. & Holmes, E. C. Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80, 2535–2543 (1999). A review of recombination frequency in RNA viruses, focusing particularly on the use of phylogenetic methods to investigate this characteristic.

    Article  CAS  PubMed  Google Scholar 

  • Huang, A. S. & Baltimore, D. Defective viral particles and viral disease processes. Nature 226, 325–327 (1970).

    Article  CAS  PubMed  Google Scholar 

  • Roux., L., Simon, A. E. & Holland, J. J. Effects of defective interfering viruses on virus replication and pathogenesis in vitro and in vivo. Adv. Virus Res. 40, 181–211 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazzarini, R. A., Keene, J. D. & Schubert, M. The origins of defective interfering particles of the negative-strand RNA viruses. Cell 26, 145–154 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Chetverin, A. B., Chetverina, H. V., Demidenko, A. A. & Ugarov, V. I. Nonhomologous RNA recombination in a cell-free system: evidence for a transesterification mechanism guided by secondary structure. Cell 88, 503–513 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallei, A., Pankraz, A., Thiel, H. J. & Becher, P. RNA recombination in vivo in the absence of viral replication. J. Virol. 78, 6271–6281 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gmyl, A. P. et al. Nonreplicative RNA recombination in poliovirus. J. Virol. 73, 8958–8965 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald, S. M. & Patton, J. T. Assortment and packaging of the segmented rotavirus genome. Trends Microbiol. 19, 136–144 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Nibert, M. L., Margraf, R. L. & Coombs, K. M. Nonrandom segregation of parental alleles in reovirus reassortants. J. Virol. 70, 7295–7300 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, W. P., Geske, S. M., Hickey, C. M. & Moyer, J. W. Tomato spotted wilt Tospovirus genome reassortment and genome segment-specific adaptation. Virology 244, 186–194 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Urquidi, V. & Bishop, D. H. Non-random reassortment between the tripartite RNA genomes of La Crosse and snowshoe hare viruses. J. Gen. Virol. 73, 2255–2265 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Roossinck, M. J. Symbiosis versus competition in plant virus evolution. Nature Rev. Microbiol. 3, 917–924 (2005).

    Article  CAS  Google Scholar 

  • González-Jara, P., Fraile, A., Canto, T. & García-Arenal, F. The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J. Virol. 83, 7487–7494 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyashita, S. & Kishino, H. Estimation of the size of genetic bottlenecks in cell-to-cell movement of Soil-borne wheat mosaic virus and the possible role of the bottlenecks in speeding up selection of variations in trans-acting genes or elements. J. Virol. 84, 1828–1837 (2010).

    Article  CAS  PubMed  Google Scholar 

  • García-Arriaza, J., Manrubia, S. C., Toja, M., Domingo, E. & Escarmís, C. Evolutionary transition toward defective RNAs that are infectious by complementation. J. Virol. 78, 11678–11685 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond, D. A., Silberg, J. J., Meyer, M. M., Wilke, C. O. & Arnold, F. H. On the conservative nature of intragenic recombination. Proc. Natl Acad. Sci. USA 102, 5380–5385 (2005). An important paper exploring the relative impact of mutation and recombination on the functionality of proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voigt, C. A., Martinez, C., Wang, Z. G., Mayo, S. L. & Arnold, F. H. Protein building blocks preserved by recombination. Nature Struct. Biol. 9, 553–558 (2002).

    CAS  PubMed  Google Scholar 

  • Escriu, F., Fraile, A. & García-Arenal, F. Constraints to genetic exchange support gene coadaptation in a tripartite RNA virus. PLoS Pathog. 3, e8 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pringle, C. R., Lees, J. F., Clark, W. & Elliott, R. M. Genome subunit reassortment among Bunyaviruses analysed by dot hybridization using molecularly cloned complementary DNA probes. Virology 135, 244–256 (1984).

    Article  CAS  PubMed  Google Scholar 

  • Mansky, L. M. Retrovirus mutation rates and their role in genetic variation. J. Gen. Virol. 79, 1337–1345 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Neher, R. A. & Leitner, T. Recombination rate and selection strength in HIV intra-patient evolution. PLoS Comput. Biol. 6, e1000660 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shriner, D., Rodrigo, A. G., Nickle, D. C. & Mullins, J. I. Pervasive genomic recombination of HIV-1 in vivo. Genetics 167, 1573–1583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savolainen-Kopra, C. & Blomqvist, S. Mechanisms of genetic variation in polioviruses. Rev. Med. Virol. 20, 358–371 (2010).

    Article  PubMed  Google Scholar 

  • Lai, M. M., Pearlman, S. & Anderson, L. J. in Fields Virology 5th edn (eds Howley, P. M. & Knipe, D. M.) 1305–1335 (Lippincott Williams and Wilkins, Philadelphia, USA, 2007).

    Google Scholar 

  • Urbanowicz, A. et al. Homologous crossovers among molecules of brome mosaic bromovirus RNA1 or RNA2 segments in vivo. J. Virol. 79, 5732–5742 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbs, A. & Ohshima, K. Potyviruses and the digital revolution. Annu. Rev. Phytopathol. 48, 205–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Tomimura, K. et al. Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330, 408–423 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Holmes, E. C., Worobey, M. & Rambaut, A. Phylogenetic evidence for recombination in dengue virus. Mol. Biol. Evol. 16, 405–409 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Taucher, C., Berger, A. & Mandl, C. W. A trans-complementing recombination trap demonstrates a low propensity of flaviviruses for intermolecular recombination. J. Virol. 84, 599–611 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Tolou, H. J. et al. Evidence for recombination in natural populations of dengue virus type 1 based on the analysis of complete genome sequences. J. Gen. Virol. 82, 1283–1290 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Uzcategui, N. Y. et al. Molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution and recombination. J. Gen. Virol. 82, 2945–2953 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Reiter, J. et al. Hepatitis C virus RNA recombination in cell culture. J. Hepatol. 17 Feb 2011 (doi:10.1016/j.jhep.2010.12.038).

    Article  CAS  PubMed  Google Scholar 

  • Chare, E. R., Gould, E. A. & Holmes, E. C. Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 84, 2691–2703 (2003). A study that uses a comparative phylogenetic analysis to show the low rate of recombination in (−)ssRNA viruses.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, A. J., Shaw, M. A. & Goodman, S. J. Pathogen evolution and disease emergence in carnivores. Proc. Biol. Sci. 274, 3165–3174 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boni, M. F., de Jong, M. D., van Doorn, H. R. & Holmes, E. C. Guidelines for identifying homologous recombination events in influenza A virus. PLoS ONE 5, e10434 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatchette, T. F. et al. Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. J. Gen. Virol. 85, 2327–2337 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom, S. E., Cox, N. J. & Klimov, A. Genetic analysis of human H2N2 and early H3N2 influenza viruses, 1957–1972: evidence for genetic divergence and multiple reassortment events. Virology 328, 101–119 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Xu, X. et al. Reassortment and evolution of current human influenza A and B viruses. Virus Res. 103, 55–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Jetzt, A. E. et al. High rate of recombination throughout the human immunodeficiency virus type 1 genome. J. Virol. 74, 1234–1240 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, A. et al. Recombination: multiply infected spleen cells in HIV patients. Nature 418, 144 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Nemirov, K. et al. Isolation and characterization of Dobrava hantavirus carried by the striped field mouse (Apodemus agrarius) in Estonia. J. Gen. Virol. 80, 371–379 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Vieth, S., Torda, A. E., Asper, M., Schmitz, H. & Gunther, S. Sequence analysis of L RNA of Lassa virus. Virology 318, 153–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Miranda, G. J., Azzam, O. & Shirako, Y. Comparison of nucleotide sequences between northern and southern philippine isolates of rice grassy stunt virus indicates occurrence of natural genetic reassortment. Virology 266, 26–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Rabadan, R., Levine, A. J. & Krasnitz, M. Non-random reassortment in human influenza A viruses. Influenza Other Respi. Viruses 2, 9–22 (2008).

    Article  CAS  Google Scholar 

  • Iturriza-Gómara, M., Isherwood, B., Desselberger, U. & Gray, J. Reassortment in vivo: driving force for diversity of human rotavirus strains isolated in the United Kingdom between 1995 and 1999. J. Virol. 75, 3696–3705 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe, M., Nakagomi, T., Koshimura, Y. & Nakagomi, O. Direct evidence for genome segment reassortment between concurrently-circulating human rotavirus strains. Arch. Virol. 146, 557–570 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Horimoto, T. & Kawaoka, Y. Influenza: lessons from past pandemics, warnings from current incidents. Nature Rev. Microbiol. 3, 591–600 (2005).

    Article  CAS  Google Scholar 

  • McDonald, S. M. et al. Evolutionary dynamics of human rotaviruses: balancing reassortment with preferred genome constellations. PLoS Pathog. 5, e1000634 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silander, O. K. et al. Widespread genetic exchange among terrestrial bacteriophages. Proc. Natl Acad. Sci. USA 102, 19009–19014 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice, W. R. Experimental tests of the adaptive significance of sexual recombination. Nature Rev. Genet. 3, 241–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Burt, A. Perspective: sex, recombination, and the efficacy of selection – was Weismann right? Evolution 54, 337–351 (2000).

    CAS  PubMed  Google Scholar 

  • Gu, Z., Gao, Q., Faust, E. A. & Wainberg, M. A. Possible involvement of cell fusion and viral recombination in generation of human immunodeficiency virus variants that display dual resistance to AZT and 3TC. J. Gen. Virol. 76, 2601–2605 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Kellam, P. & Larder, B. A. Retroviral recombination can lead to linkage of reverse transcriptase mutations that confer increased zidovudine resistance. J. Virol. 69, 669–674 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moutouh, L., Corbeil, J. & Richman, D. D. Recombination leads to the rapid emergence of HIV-1 dually resistant mutants under selective drug pressure. Proc. Natl Acad. Sci. USA 93, 6106–6111 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusa, K., Kavlick, M. F., Kosalaraksa, P. & Mitsuya, H. HIV-1 acquires resistance to two classes of antiviral drugs through homologous recombination. Antiviral Res. 36, 179–189 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Kalinina, O., Norder, H., Mukomolov, S. & Magnius, L. O. A natural intergenotypic recombinant of hepatitis C virus identified in St. Petersburg. J. Virol. 76, 4034–4043 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noppornpanth, S. et al. Identification of a naturally occurring recombinant genotype 2/6 hepatitis C virus. J. Virol. 80, 7569–7577 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sentandreu, V. et al. Evidence of recombination in intrapatient populations of hepatitis C virus. PLoS ONE 3, e3239 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjuan, R., Nebot, M. R., Chirico, N., Mansky, L. M. & Belshaw, R. Viral mutation rates. J. Virol. 84, 9733–9748 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miralles, R., Gerrish, P. J., Moya, A. & Elena, S. F. Clonal interference and the evolution of RNA viruses. Science 285, 1745–1747 (1999). An important experimental demonstration of clonal interference in RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  • Pepin, K. M. & Wichman, H. A. Experimental evolution and genome sequencing reveal variation in levels of clonal interference in large populations of bacteriophage phiX174. BMC Evol. Biol. 8, 85 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon, A. & Chao, L. Drift increases the advantage of sex in RNA bacteriophage phi6. Genetics 166, 19–24 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).

    Article  CAS  PubMed  Google Scholar 

  • Chao, L. Fitness of RNA virus decreased by Muller's ratchet. Nature 348, 454–455 (1990). A classic demonstration of the occurrence of Muller's ratchet in an experimental RNA virus population.

    Article  CAS  PubMed  Google Scholar 

  • Chao, L. in The Evolutionary Biology of Viruses (ed. Morse, S. S.) 233–250 (Raven, New York,1994).

    Google Scholar 

  • Chao, L., Tran, T. T. & Matthews, C. Muller's ratchet and the advantage of sex in the RNA virus phi-6. Evolution 46, 289–299 (1992).

    PubMed  Google Scholar 

  • Chao, L. & Tran, T. T. The advantage of sex in the RNA virus phi6. Genetics 147, 953–959 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lázaro, E., Escarmís, C., Pérez-Mercader, J., Manrubia, S. C. & Domingo, E. Resistance of virus to extinction on bottleneck passages: study of a decaying and fluctuating pattern of fitness loss. Proc. Natl Acad. Sci. USA 100, 10830–10835 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keightley, P. D. & Eyre-Walker, A. Deleterious mutations and the evolution of sex. Science 290, 331–333 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988). A seminal report outlining the mutational deterministic hypothesis for the evolution of sexual reproduction.

    Article  CAS  PubMed  Google Scholar 

  • Duffy, S., Shackelton, L. A. & Holmes, E. C. Rates of evolutionary change in viruses: patterns and determinants. Nature Rev. Genet. 9, 267–276 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Elena, S. F. Little evidence for synergism among deleterious mutations in a nonsegmented RNA virus. J. Mol. Evol. 49, 703–707 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Pybus, O. G. et al. Phylogenetic evidence for deleterious mutation load in RNA viruses and its contribution to viral evolution. Mol. Biol. Evol. 24, 845–852 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Bonhoeffer, S., Chappey, C., Parkin, N. T., Whitcomb, J. M. & Petropoulos, C. J. Evidence for positive epistasis in HIV-1. Science 306, 1547–1550 (2004). An important study showing that positive (antagonistic) epistasis occurs in HIV and, hence, that recombination is unlikely to be selected as a way of purging deleterious mutations.

    Article  CAS  PubMed  Google Scholar 

  • Burch, C. L., Turner, P. E. & Hanley, K. A. Patterns of epistasis in RNA viruses: a review of the evidence from vaccine design. J. Evol. Biol. 16, 1223–1235 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Sanjuan, R., Moya, A. & Elena, S. F. The contribution of epistasis to the architecture of fitness in an RNA virus. Proc. Natl Acad. Sci. USA 101, 15376–15379 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro, B., Rambaut, A., Pybus, O. G. & Holmes, E. C. A phylogenetic method for detecting positive epistasis in gene sequences and its application to RNA virus evolution. Mol. Biol. Evol. 23, 1724–1730 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Elena, S. F., Carrasco, P., Daros, J. A. & Sanjuan, R. Mechanisms of genetic robustness in RNA viruses. EMBO Rep. 7, 168–173 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner, P. E. & Chao, L. Sex and the evolution of intrahost competition in RNA virus phi6. Genetics 150, 523–532 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fulton, R. W. Practices and precautions in the use of cross protection for plant-virus disease control. Annu. Rev. Phytopathol. 24, 67–81 (1986).

    Article  Google Scholar 

  • Nethe, M., Berkhout, B. & van der Kuyl, A. C. Retroviral superinfection resistance. Retrovirology 2, 52 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, Y. M., Tscherne, D. M., Yun, S. I., Frolov, I. & Rice, C. M. Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J. Virol. 79, 3231–3242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams, R. H. & Brown, D. T. BHK cells expressing Sindbis virus-induced homologous interference allow the translation of nonstructural genes of superinfecting virus. J. Virol. 54, 351–357 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karpf, A. R., Lenches, E., Strauss, E. G., Strauss, J. H. & Brown, D. T. Superinfection exclusion of alphaviruses in three mosquito cell lines persistently infected with Sindbis virus. J. Virol. 71, 7119–7123 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michod, R. E., Bernstein, H. & Nedelcu, A. M. Adaptive value of sex in microbial pathogens. Infect. Genet. Evol. 8, 267–285 (2008). An article that outlines the repair hypothesis for the evolution of sexual reproduction and applies it to microbial populations, including RNA viruses.

    Article  CAS  PubMed  Google Scholar 

  • Coffin, J. M. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J. Gen. Virol. 42, 1–26 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Xu, H. & Boeke, J. D. High-frequency deletion between homologous sequences during retrotransposition of Ty elements in Saccharomyces cerevisiae. Proc. Natl Acad. Sci. USA 84, 8553–8557 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, W. S. & Temin, H. M. Effect of gamma radiation on retroviral recombination. J. Virol. 66, 4457–4463 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novella, I. S., Ball, L. A. & Wertz, G. W. Fitness analyses of vesicular stomatitis strains with rearranged genomes reveal replicative disadvantages. J. Virol. 78, 9837–9841 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spann, K. M., Collins, P. L. & Teng, M. N. Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J. Virol. 77, 11201–11211 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archer, A. M. & Rico-Hesse, R. High genetic divergence and recombination in Arenaviruses from the Americas. Virology 304, 274–281 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Charrel, R. N. et al. Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem. Biophys. Res. Commun. 296, 1118–1124 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Wittmann, T. J. et al. Isolates of Zaire ebolavirus from wild apes reveal genetic lineage and recombinants. Proc. Natl Acad. Sci. USA 104, 17123–17127 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawicki, S. G., Sawicki, D. L. & Siddell, S. G. A contemporary view of coronavirus transcription. J. Virol. 81, 20–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Onafuwa-Nuga, A. & Telesnitsky, A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol. Mol. Biol. Rev. 73, 451–480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondrashov, A. S. & Crow, J. F. Haploidy or diploidy: which is better? Nature 351, 314–315 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Otto, S. P. & Goldstein, D. B. Recombination and the evolution of diploidy. Genetics 131, 745–751 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrot, V., Richerd, S. & Valero, M. Transition from haploidy to diploidy. Nature 351, 315–317 (1991).

    Article  CAS  PubMed  Google Scholar 

  • Froissart, R. et al. Recombination every day: abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol. 3, e89 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudson, R. R. Estimating the recombination parameter of a finite population model without selection. Genet. Res. 50, 245–250 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Hudson, R. R. Two-locus sampling distributions and their application. Genetics 159, 1805–1817 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  • McVean, G., Awadalla, P. & Fearnhead, P. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160, 1231–1241 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simon-Loriere, E. et al. Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus. PLoS Pathog. 5, e1000418 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolaitchik, O. A., Galli, A., Moore, M. D., Pathak, V. K. & Hu, W. S. Multiple barriers to recombination between divergent HIV-1 variants revealed by a dual-marker recombination assay. J. Mol. Biol. 407, 521–531 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motomura, K., Chen, J. & Hu, W. S. Genetic recombination between human immunodeficiency virus type 1 (HIV-1) and HIV-2, two distinct human lentiviruses. J. Virol. 82, 1923–1933 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Marsh, G. A., Rabadan, R., Levine, A. J. & Palese, P. Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. J. Virol. 82, 2295–2304 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Simon-Loriere, E., Martin, D. P., Weeks, K. M. & Negroni, M. RNA structures facilitate recombination-mediated gene swapping in HIV-1. J. Virol. 84, 12675–12682 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver, S. C. Evolutionary influences in arboviral disease. Curr. Top. Microbiol. Immunol. 299, 285–314 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jackwood, M. W. et al. Emergence of a group 3 coronavirus through recombination. Virology 398, 98–108 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Martin, G. S. The road to Src. Oncogene 23, 7910–7917 (2004).

    Article  CAS  PubMed  Google Scholar