The winnowing: establishing the squid–vibrio symbiosis

  • McFall-Ngai, M. J. & Ruby, E. G. Symbiont recognition and subsequent morphogenesis as early events in an animal–bacterial symbiosis. Science 254, 1491–1494 (1991).

    Article  CAS  Google Scholar 

  • McFall-Ngai, M. J. & Ruby, E. G. Squids and vibrios: when they first meet. BioScience 48, 257–265 (1998).

    Article  Google Scholar 

  • McFall-Ngai, M. J. Unseen forces: the influence of bacteria on animal development. Dev. Biol. 242, 1–14 (2002). Discusses the influence of bacteria on invertebrate and vertebrate host development.

    Article  CAS  Google Scholar 

  • Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).

    Article  Google Scholar 

  • Ruby, E. G. Lessons from a cooperative bacterial–animal association: the Vibrio fischeri–Euprymna scolopes light organ symbiosis. Annu. Rev. Microbiol. 50, 591–624 (1996).

    Article  CAS  Google Scholar 

  • Haygood, M. G. Light organ symbioses in fishes. Crit. Rev. Microbiol. 19, 191–216 (1993).

    Article  CAS  Google Scholar 

  • Gros, O., Darrasse, A., Durand, P., Frenkiel, L. & Moueza, M. Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl. Environ. Microbiol. 62, 2324–30 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muller-Parker, G. & D'Elia, C. F. in Life and Death of Coral Reefs (ed. Birkeland, C.) 96–113 (Chapman and Hall, New York, 1997).

    Book  Google Scholar 

  • Ruby, E. G. & Lee, K. H. The Vibrio fischeri–Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64, 805–812 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. -H. & Ruby, E. G. Detection of the light organ symbiont, Vibrio fischeri, in Hawaiian seawater by using lux gene probes. Appl. Environ. Microbiol. 58, 942–947 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994). Demonstrated that populations of the squid host dramatically influence the concentration of V. fischeri in the bacterioplankton, which in turn affects the efficiency with which juvenile squid are colonized at hatching.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boettcher, K. J., Ruby, E. G. & McFall-Ngai, M. J. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179, 65–73 (1996).

    Article  Google Scholar 

  • Nyholm, S. V. & McFall-Ngai, M. J. Sampling the microenvironment of the Euprymna scolopes light organ: description of a population of host cells with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195, 89–97 (1998).

    Article  CAS  Google Scholar 

  • Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).

    Article  CAS  Google Scholar 

  • McCann, J., Stabb, E. V., Millikan, D. S. & Ruby, E. G. Population effects of Vibrio fischeri during infection of Euprymna scolopes. Appl. Environ. Microbiol. 69, 5928–5934 (2003).

    Article  CAS  Google Scholar 

  • McFall-Ngai, M. J. & Ruby, E. G. Sepiolids and vibrios: when they first meet. BioScience 48, 257–265 (1998).

    Article  Google Scholar 

  • Montgomery, M. K. & McFall-Ngai, M. J. The effect of bacterial symbionts on early post-embryonic development of a squid light organ. Development 120, 1719–1729 (1994).

    CAS  PubMed  Google Scholar 

  • Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal–bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000). Provided the first mechanism by which an aquatic animal could harvest relatively scarce symbionts from the environment.

    Article  CAS  Google Scholar 

  • Nyholm, S. V., Deplancke, B., Gaskins, H. R., Apicella, M. A. & McFall-Ngai, M. J. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68, 5113–5122 (2002).

    Article  CAS  Google Scholar 

  • Nyholm, S. V. & McFall-Ngai, M. J. Dominance of Vibrio fischeri in secreted mucus outside the light organ of Euprymna scolopes: the first site of symbiont specificity. Appl. Environ. Microbiol. 69, 3932–3937 (2003).

    Article  CAS  Google Scholar 

  • Deloney-Marino, C. R., Wolfe, A. J. & Visick K. L. Chemoattraction of Vibrio fischeri to serine, nucleosides, and N-acetylneuraminic acid, a component of squid light-organ mucus. Appl. Environ. Microbiol. 69, 7527–7530 (2003).

    Article  CAS  Google Scholar 

  • Sonnenberg, J. L., Angenent, L. T. & Gordon, J. I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine? Nature Immunol. 5, 569–573 (2004). Reviews our knowledge of the microanatomical, molecular and biochemical interactions of beneficial intestinal bacteria and their mammalian hosts.

    Article  Google Scholar 

  • Salyers, A. A., Pajeau, M. & McCarthy, R. E. Importance of mucopolysaccarides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice. Appl. Environ. Microbiol. 54, 1970–1976 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwa, V. & Salyers, A. A. Analysis of two chondroitin sulfate utilization mutants of Bacteroides thetaiotaomicron that differ in their abilities to compete with the wild type in the gastrointestinal tracts of germfree mice. Appl. Environ. Microbiol. 58, 869–876 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson, S. K. & McFall-Ngai, M. J. NO means 'yes' in the squid–vibrio symbiosis: the role of nitric oxide in the initiation of a beneficial association. Cell. Microbiol. (in the press).

  • Weis, V. M., Small, A. L. & McFall-Ngai, M. J. A peroxidase related to the mammalian antimicrobial protein myeloperoxidase in the Euprymna–Vibrio mutualism. Proc. Natl Acad. Sci. USA 93, 13683–13688 (1996).

    Article  CAS  Google Scholar 

  • Small, A. L. & McFall-Ngai, M. J. A halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes. J. Cell. Biochem. 72, 445–457 (1999).

    Article  CAS  Google Scholar 

  • Koropatnick, T., Apicella, M. A. & McFall-Ngai, M. J. Symbiont-induced developmental remodeling of the Euprymna scolopes light organ involves microbial membrane factors and host hemocyte migration. Mol. Biol. Cell. 13, 252a (2002).

    Google Scholar 

  • Kimbell, J. R. & McFall-Ngai, M. J. Symbiont-induced changes in host actin during the onset of a beneficial animal–bacterial association. Appl. Environ. Microbiol. 70, 1434–1441 (2004).

    Article  CAS  Google Scholar 

  • Lamarcq, L. H. & McFall-Ngai, M. J. Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by Vibrio fischeri. Infect. Immun. 66, 777–785 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foster, J. S., Apicella, M. A. & McFall-Ngai, M. J. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226, 242–254 (2000). Demonstrated that bacterial lipopolysaccharide induces apoptosis in a normal developmental programme of an animal–bacterial interaction, not only as part of the cytopathology of a bacterial infection.

    Article  CAS  Google Scholar 

  • Kaufman, M. R., Ikeda, Y., Patton, C., Van Dykhuizen, G. & Epel, D. Bacterial symbionts colonize the accessory nidamental gland of the squid Loligo opalescens via horizontal transmission. Biol. Bull. 194, 36–43 (1998).

    Article  CAS  Google Scholar 

  • Southward, E. C. Development of the gut and segmentation of newly settled stages of Ridgeia (Vestimentifera): implications for relationship between Vestimentifera and Pogonophora. J. Mar. Biolog. Assoc. UK 68, 465–487 (1988).

    Article  Google Scholar 

  • Jensen, E. T., Kharazmi, A., Hoiby, N. & Costerton, J. W. Some bacterial parameters influencing the neutrophil oxidative burst response to Pseudomonas aeruginosa biofilms. APMIS 100, 727–733 (1992).

    Article  CAS  Google Scholar 

  • Barbieri, J. T., Riese, M. J. & Aktories, K. Bacterial toxins that modify the actin cytoskeleton. Annu. Rev. Cell Dev. Biol. 18, 315–344 (2002).

    Article  CAS  Google Scholar 

  • Fullner, K. J., Lencer, W. I. & Mekalanos, J. J. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells are dependent on production of cholera toxin and the RTX toxin. Infect. Immun. 69, 6310–6317 (2001).

    Article  CAS  Google Scholar 

  • Doino, J. A. & McFall-Ngai, M. J. Transient exposure to competent bacteria initiates symbiosis-specific squid light organ morphogenesis. Biol. Bull. 189, 347–355 (1995).

    Article  CAS  Google Scholar 

  • Ruby, E. G. The Euprymna scolopesVibrio fischeri symbiosis: a biomedical model for the study of bacterial colonization of animal tissue. J. Mol. Microbiol. Biotech. 1, 13–21 (1999). Compares the colonization determinants of pathogenic and beneficial vibrios, and outlines the genetic tools available in Vibrio fischeri.

    CAS  Google Scholar 

  • Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986–6991 (1994).

    Article  CAS  Google Scholar 

  • Millikan, D. S. & Ruby, E. G. FlrA, a σ54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003).

    Article  CAS  Google Scholar 

  • Millikan, D. S. & Ruby, E. G. Alterations in Vibrio fischeri motility correlate with a delay in symbiosis initiation and are associated with additional symbiotic colonization defects. Appl. Environ. Microbiol. 68, 2519–2528 (2002).

    Article  CAS  Google Scholar 

  • Aeckersberg, F., Lupp, C., Feliciano, B. & Ruby, E. G. Vibrio fischeri outer membrane protein OmpU plays a role in normal symbiotic colonization. J. Bacteriol. 183, 6590–6597 (2001).

    Article  CAS  Google Scholar 

  • Whistler, C. A. & Ruby, E. G. GacA regulates symbiotic colonization traits of Vibrio fischeri and facilitates a beneficial association with an animal host. J. Bacteriol. 185, 7202–7212 (2003).

    Article  CAS  Google Scholar 

  • Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001).

    Article  CAS  Google Scholar 

  • Lupp, C., Urbanowski, M., Greenberg, E. P. & Ruby, E. G. The Vibrio fischeri quorum-sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Mol. Microbiol. 50, 319–331 (2003).

    Article  CAS  Google Scholar 

  • Fidopiastis, P. M., Miyamoto, C. M., Jobling, M. G., Meighen, E. A. & Ruby, E. G. LitR, a new transcriptional activator in Vibrio fischeri, regulates luminescence and symbiotic light organ colonization. Mol. Microbiol. 45, 131–143 (2002).

    Article  CAS  Google Scholar 

  • Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).

    Article  CAS  Google Scholar 

  • Deloney, C. R., Bartley, T. M. & Visick, K. L. Role for phosphoglucomutase in Vibrio fischeri–Euprymna scolopes symbiosis. J. Bacteriol. 184, 5121–5129 (2002).

    Article  CAS  Google Scholar 

  • Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. J. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000). Showed that luminescence is required for persistence of the bacterial symbiont in the host squid light organ, a requirement that correlates with the ability of the symbiont to induce oedema in host cells with which it directly associates.

    Article  CAS  Google Scholar 

  • Graf, J. & Ruby, E. G. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence, as well as nitrogen utilization. Mol. Microbiol. 37, 168–179 (2000).

    Article  CAS  Google Scholar 

  • Visick, K. L. & Ruby, E. G. The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and approach to stationary phase. J. Bacteriol. 180, 2087–2092 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nealson, K. H. & Hastings, J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol. Rev. 43, 496–518 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrd, J. C., Yunker, C. K., Xu, Q. S., Sternberg, L. R. & Bresalier, R. S. Inhibition of gastric mucin synthesis by Helicobacter pylori. Gastroenterology 118, 1072–1079 (2000).

    Article  CAS  Google Scholar 

  • Micots, I., Augeron, C., Laboisse, C. L., Muzeau, F. & Megraud, F. Mucin exocytosis: a major target for Helicobacter pylori. J. Clin. Pathol. 46, 241–245 (1993).

    Article  CAS  Google Scholar 

  • Dinwiddle, R. Pathogenesis of lung disease in cystic fibrosis. Respiration 67, 3–8 (2000).

    Article  Google Scholar 

  • Magor, B. G. & Magor, K. E. Evolution of effectors and receptors of innate immunity. Dev. Comp. Immunol. 25, 651–682 (2001).

    Article  CAS  Google Scholar 

  • Nonaka, M. & Yoshizaki, F. Evolution of the complement system. Mol. Immunol. 40, 897–902 (2004).

    Article  CAS  Google Scholar 

  • Azumi, K. et al. Genomic analysis of immunity in a Urochordate and emergence of the vertebrate immune system: 'waiting for Godot'. Immunogenetics 55, 570–581 (2003).

    Article  CAS  Google Scholar 

  • Douglas, A. E. Symbiotic Interactions (Oxford Science Publications, Oxford, 1994).

    Google Scholar 

  • Friedrich, A. B. et al. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134, 461–470 (1999).

    Article  Google Scholar 

  • Benayahu, Y. & Schleyer, M. H. Reproduction in Anthelia glauca (Octocorallia: Xeniidae): transmission of algal symbionts during planular brooding. Mar. Biol. 131, 433–442 (1998).

    Article  Google Scholar 

  • Schwartz, D. A., Krupp, D. A. & Weis, V. M. Late larval development and onset of symbiosis in the scleractinian coral Fungia scutaria. Biol. Bull. 196, 70–79 (1999).

    Article  Google Scholar 

  • Harrison, P. L. & Wallace, C. C. Reproduction, dispersal and recruitment of scleractinian corals (Elsevier, Amsterdam, 1990).

    Google Scholar 

  • Loh, W. K. H., Loi, T., Carter, D. & Hoegh-Guldberg, O. Genetic variability of the symbiotic dinoflagellates from the wide-ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar. Ecol. Prog. Ser. 222, 97–107 (2001).

    Article  Google Scholar 

  • Cary, S. C., Warren, W., Anderson, E. & Giovannoni, S. J. Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol. Mar. Biol. Biotechnol. 2, 51–62 (1993).

    CAS  PubMed  Google Scholar 

  • Cary, S. C. & Giovannoni, S. J. Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc. Natl Acad. Sci. USA 90, 5695–5699 (1993).

    Article  CAS  Google Scholar 

  • Distel, D. L. et al. Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J. Bacteriol. 170, 2506–2510 (1988).

    Article  CAS  Google Scholar 

  • Won, Y. J. et al. Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl. Environ. Microbiol. 69, 6785–6792 (2003).

    Article  CAS  Google Scholar 

  • McFall-Ngai, M. J. Consequences of evolving with bacterial symbionts: insights from the squid–vibrio associations. Annu. Rev. Ecol. Syst. 30, 235–256 (1999).

    Article  Google Scholar 

  • Grigioni, S., Boucher-Rodoni, R., Demarta, A., Tonolla, M. & Peduzzi, R. Phylogenetic characterization of bacterial symbionts in the accessory nidamental gland of the sepiolid Sepia officnialis Cephalopoda:Decapoda. Mar. Biol. 136, 217–222 (2000).

    Article  CAS  Google Scholar 

  • Barbieri, E. et al. Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo peali (Cephalopoda: Loliginidae). Environ. Microbiol. 3, 151–167 (2001).

    Article  CAS  Google Scholar 

  • Baumann, P., Moran, N. A. & Baumann, L. The evolution and genetics of aphid endosymbionts. BioScience 47, 12–20 (1997).

    Article  Google Scholar 

  • O'Neil, S. L., Hoffmann, A. A. & Werren, J. H. Influential Passengers: Inherited Microorganisms and Arthropod Reproduction (Oxford University Press, New York, 1997).

    Google Scholar 

  • Zimmer, C. Wolbachia: a tale of sex and survival. Science 292, 1093–1095 (2001).

    Article  CAS  Google Scholar 

  • Abe, T., Bignell, D. E. & Higashi, M. Termites: Evolution, Sociality, Symbiosis, Ecology (Kluwer Academic, Massachusetts, 2000).

    Book  Google Scholar 

  • Hooper, L. V. et al. Molecular analysis of commensal host–microbial relationships in the intestine. Science 291, 881–884 (2001).

    Article  CAS  Google Scholar 

  • Russell, J. B. & Rychlik, J. L. Factors that alter rumen ecology. Science 292, 1119–1122 (2001).

    Article  CAS  Google Scholar 

  • Hooper, L. V. & Gordon, J. I. Commensal host–bacterial relationships in the gut. Science 292, 1115–1118 (2001).

    Article  CAS  Google Scholar 

  • Paster, B. et al. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183, 3770–3783 (2001).

    Article  CAS  Google Scholar