File:Window function and frequency response - Rectangular.svg - Wikipedia
Gnu Octave and Perl Scripts
The generated SVG files should be post-processed by a perl script (thanks to {{U|Olli Niemitalo}}), which scans the current directory for .svg files and makes the necessary changes if they have not already been made. The script (below) does the following:
Octave
graphics_toolkit gnuplot pkg load signal % Characteristics common to both plots set(0, "DefaultAxesFontName", "Microsoft Sans Serif") set(0, "DefaultTextFontName", "Microsoft Sans Serif") set(0, "DefaultAxesTitleFontWeight", "bold") set(0, "DefaultAxesFontWeight", "bold") set(0, "DefaultAxesFontSize", 20) set(0, "DefaultAxesLineWidth", 3) set(0, "DefaultAxesBox", "on") set(0, "DefaultAxesGridLineStyle", "-") set(0, "DefaultAxesGridColor", [0 0 0]) % black set(0, "DefaultAxesGridAlpha", 0.25) % opaqueness of grid set(0, "DefaultAxesLayer", "bottom") % grid not visible where overlapped by graph %======================================================================== function plotWindow (w, wname, wfilename = "", wspecifier = "", wfilespecifier = "") close % If there is a previous screen image, remove it. M = 32; % Fourier transform size as multiple of window length Q = 512; % Number of samples in time domain plot P = 40; % Maximum bin index drawn dr = 130; % (dynamic range) Maximum attenuation (dB) drawn in frequency domain plot L = length(w); B = L*sum(w.^2)/sum(w)^2; % noise bandwidth (bins) n = [0 : 1/Q : 1]; w2 = interp1 ([0 : 1/(L-1) : 1], w, n); if (M/L < Q) Q = M/L; endif figure("position", [1 1 1200 600]) % width = 2×height, because there are 2 plots % Plot the window function subplot(1,2,1) area(n,w2,"FaceColor", [0 0.4 0.6], "edgecolor", [0 0 0], "linewidth", 1) g_x = [0 : 1/8 : 1]; % user defined grid X [start:spaces:end] g_y = [0 : 0.1 : 1]; set(gca,"XTick", g_x) set(gca,"YTick", g_y) % Special y-scale if filename includes "flat top" if(index(wname, "flat top")) ylimits = [-0.1 1.05]; else ylimits = [0 1.05]; endif ylim(ylimits) ylabel("amplitude","FontSize",28) set(gca,"XTickLabel",[" 0"; " "; " "; " "; " "; " "; " "; " "; " N"]) grid("on") xlabel("samples","FontSize",28) #{ % This is a disabled work-around for an Octave bug, if you don't want to run the perl post-processor. text(-.18, .4,"amplitude","rotation",90, "Fontsize", 28); text(1.15, .4,"decibels", "rotation",90, "Fontsize", 28); #} %Construct a title from input arguments. %The default interpreter is "tex", which can render subscripts and the following Greek character codes: % \alpha \beta \gamma \delta \epsilon \zeta \eta \theta \vartheta \iota \kappa \lambda \mu \nu \xi \o % \pi \varpi \rho \sigma \varsigma \tau \upsilon \phi \chi \psi \omega. % if (strcmp (wspecifier, "")) title(cstrcat(wname," window"), "FontSize", 28) elseif (length(strfind (wspecifier, "&#")) == 0 ) title(cstrcat(wname,' window (', wspecifier, ')'), "FontSize", 28) else % The specifiers '\sigma_t' and '\mu' work correctly in the output file, but not in subsequent thumbnails. % So UNICODE substitutes are used. The tex interpreter would remove the & character, needed by the Perl script. title(cstrcat(wname,' window (', wspecifier, ')'), "interpreter", "none", "FontSize", 28) endif ax1 = gca; % Compute spectal leakage distribution H = abs(fft([w zeros(1,(M-1)*L)])); H = fftshift(H); H = H/max(H); H = 20*log10(H); H = max(-dr,H); n = ([1:M*L]-1-M*L/2)/M; k2 = [-P : 1/M : P]; H2 = interp1 (n, H, k2); % Plot the leakage distribution subplot(1,2,2) h = stem(k2,H2,"-"); set(h,"BaseValue",-dr) xlim([-P P]) ylim([-dr 6]) set(gca,"YTick", [0 : -10 : -dr]) set(findobj("Type","line"), "Marker", "none", "Color", [0.8710 0.49 0]) grid("on") set(findobj("Type","gridline"), "Color", [.871 .49 0]) ylabel("decibels","FontSize",28) xlabel("bins","FontSize",28) title("Fourier transform","FontSize",28) text(-5, -126, ['B = ' num2str(B,'%5.3f')],"FontWeight","bold","FontSize",14) ax2 = gca; % Configure the plots so that they look right after the Perl post-processor. % These are empirical values (trial & error). % Note: Would move labels and title closer to axes, if I could figure out how to do it. x1 = .08; % left margin for y-axis labels x2 = .02; % right margin y1 = .14; % bottom margin for x-axis labels y2 = .14; % top margin for title ws = .13; % whitespace between plots width = (1-x1-x2-ws)/2; height = 1-y1-y2; set(ax1,"Position", [x1 y1 width height]) % [left bottom width height] set(ax2,"Position", [1-width-x2 y1 width height]) %Construct a filename from input arguments. if (strcmp (wfilename, "")) wfilename = wname; endif if (strcmp (wfilespecifier, "")) wfilespecifier = wspecifier; endif if (strcmp (wfilespecifier, "")) savetoname = cstrcat("Window function and frequency response - ", wfilename, ".svg"); else savetoname = cstrcat("Window function and frequency response - ", wfilename, " (", wfilespecifier, ").svg"); endif print(savetoname, "-dsvg", "-S1200,600") % close % Relocated to the top of the function endfunction %======================================================================== global N L % Generate odd-length, symmetric windows N = 2^16; % Large value ensures most accurate value of B n = 0:N; L = length(n); % Window length %======================================================================== w = ones(1,L); plotWindow(w, "Rectangular") %======================================================================== w = 1 - abs(n-N/2)/(L/2); plotWindow(w, "Triangular") % Indistinguishable from Triangular for large N % w = 1 - abs(n-N/2)/(N/2); % plotWindow(w, "Bartlett") %======================================================================== w = parzenwin(L).'; plotWindow(w, "Parzen"); %======================================================================== w = 1-((n-N/2)/(N/2)).^2; plotWindow(w, "Welch"); %======================================================================== w = sin(pi*n/N); plotWindow(w, "Sine") %======================================================================== w = 0.5 - 0.5*cos(2*pi*n/N); plotWindow(w, "Hann") %======================================================================== w = 0.53836 - 0.46164*cos(2*pi*n/N); plotWindow(w, "Hamming", "Hamming", 'a_0 = 0.53836', "alpha = 0.53836") %======================================================================== w = 0.42 - 0.5*cos(2*pi*n/N) + 0.08*cos(4*pi*n/N); plotWindow(w, "Blackman") %======================================================================== w = 0.355768 - 0.487396*cos(2*pi*n/N) + 0.144232*cos(4*pi*n/N) -0.012604*cos(6*pi*n/N); plotWindow(w, "Nuttall", "Nuttall", "continuous first derivative") %======================================================================== w = 0.3635819 - 0.4891775*cos(2*pi*n/N) + 0.1365995*cos(4*pi*n/N) -0.0106411*cos(6*pi*n/N); plotWindow(w, "Blackman-Nuttall", "Blackman-Nuttall") %======================================================================== w = 0.35875 - 0.48829*cos(2*pi*n/N) + 0.14128*cos(4*pi*n/N) -0.01168*cos(6*pi*n/N); plotWindow(w, "Blackman-Harris", "Blackman-Harris") %======================================================================== % Matlab coefficients a = [0.21557895 0.41663158 0.277263158 0.083578947 0.006947368]; % Stanford Research Systems (SRS) coefficients % a = [1 1.93 1.29 0.388 0.028]; % a = a / sum(a); w = a(1) - a(2)*cos(2*pi*n/N) + a(3)*cos(4*pi*n/N) -a(4)*cos(6*pi*n/N) +a(5)*cos(8*pi*n/N); plotWindow(w, "flat top") %======================================================================== % The version using \sigma no longer renders correct thumbnail previews. % Ollie's older version using σ seems to solve that problem. sigma = 0.4; w = exp(-0.5*( (n-N/2)/(sigma*N/2) ).^2); % plotWindow(w, "Gaussian", "Gaussian", '\sigma = 0.4', "sigma = 0.4") plotWindow(w, "Gaussian", "Gaussian", "σ = 0.4", "sigma = 0.4") %======================================================================== % Confined Gaussian global T P abar target_stnorm N = 512; % Reduce N to avoid excessive computation time n = 0:N; L = length(n); % Window length target_stnorm = 0.1; function [g,sigma_w,sigma_t] = CGWn(alpha, M) % determine eigenvectors of M(alpha) global L P T opts.maxit = 10000; if(M ~= L) [g,lambda] = eigs(P + alpha*T, M, 'sa', opts); else [g,lambda] = eig(P + alpha*T); end sigma_t = sqrt(diag((g'*T*g) / (g'*g))); sigma_w = sqrt(diag((g'*P*g) / (g'*g))); end function [h1] = helperCGW(anorm) global L abar target_stnorm [~,~,sigma_t] = CGWn(anorm*abar,1); h1 = sigma_t - target_stnorm * L; end % define alphabar, and matrices T and P T = zeros(L,L); P = zeros(L,L); for m=1:L T(m,m) = (m - (L+1)/2)^2; for l=1:L if m ~= l P(m,l) = 2*(-1)^(m-l)/(m-l)^2; else P(m,l) = pi^2/3; end end end abar = (10/L)^4/4; [anorm, aval] = fzero(@helperCGW, 0.1/target_stnorm); [CGWg, CGWsigma_w, CGWsigma_t] = CGWn(anorm*abar,1); sigma_t = CGWsigma_t/L % Confirm sigma_t w = CGWg * sign(mean(CGWg)); w = w'/max(w); % \sigma_t works correctly in actual file, but not in thumbnail versions. % plotWindow(w, "Confined Gaussian", "Confined Gaussian", '\sigma_t = 0.1', "sigma_t = 0.1"); plotWindow(w, "Confined Gaussian", "Confined Gaussian", "σₜ = 0.1", "sigma_t = 0.1"); N = 2^16; % restore original N n = 0:N; L = length(n); % Window length %======================================================================== global denominator; sigma = 0.1; denominator = (2*L*sigma).^2; function [gaussout] = gauss(x) global N denominator gaussout = exp(- (x-N/2).^2 ./ denominator); end w = gauss(n) - gauss(-1/2).*(gauss(n+L) + gauss(n-L))./(gauss(-1/2 + L) + gauss(-1/2 - L)); % \sigma_t works correctly in actual file, but not in thumbnail versions % plotWindow(w, "App. conf. Gaussian", "Approximate confined Gaussian", '\sigma_t = 0.1', "sigma_t = 0.1"); plotWindow(w, "App. conf. Gaussian", "Approximate confined Gaussian", "σₜ = 0.1", "sigma_t = 0.1"); %======================================================================== alpha = 0.5; a = alpha*N/2; w = ones(1,L); m = 0 : a; if( max(m) == a ) m = m(1:end-1); endif M = length(m); w(1:M) = 0.5*(1-cos(pi*m/a)); w(L:-1:L-M+1) = w(1:M); % plotWindow(w, "Tukey", "Tukey", '\alpha = 0.5', "alpha = 0.5") plotWindow(w, "Tukey", "Tukey", "α = 0.5", "alpha = 0.5") %======================================================================== epsilon = 0.1; a = N*epsilon; w = ones(1,L); m = 0 : a; if( max(m) == a ) m = m(1:end-1); endif % Divide by 0 is handled by Octave. Results in w(1) = 0. z_exp = a./m - a./(a-m); M = length(m); w(1:M) = 1 ./ (exp(z_exp) + 1); w(L:-1:L-M+1) = w(1:M); #{ % The original method is harder to understand: t_cut = N/2 - a; T_in = abs(n - N/2); z_exp = (t_cut - N/2) ./ (T_in - t_cut)... + (t_cut - N/2) ./ (T_in - N/2); % The numerator forces sigma = 0 at n = 0: sigma = (T_in < N/2) ./ (exp(z_exp) + 1); % Either the 1st term or the 2nd term is 0, depending on n: w = 1 * (T_in <= t_cut) + sigma .* (T_in > t_cut); #} % plotWindow(w, "Planck-taper", "Planck-taper", '\epsilon = 0.1', "epsilon = 0.1") plotWindow(w, "Planck-taper", "Planck-taper", "ε = 0.1", "epsilon = 0.1") %======================================================================== N = 2^12; % Reduce N to avoid excess memory requirement n = 0:N; L = length(n); % Window length alpha = 2; s = sin(alpha*2*pi/L*[1:N])./[1:N]; c0 = [alpha*2*pi/L,s]; A = toeplitz(c0); [V,evals] = eigs(A, 1); [emax,imax] = max(abs(diag(evals))); w = abs(V(:,imax)); w = w.'; w = w / max(w); % plotWindow(w, "DPSS", "DPSS", '\alpha = 2', "alpha = 2") plotWindow(w, "DPSS", "DPSS", "α = 2", "alpha = 2") %======================================================================== alpha = 3; s = sin(alpha*2*pi/L*[1:N])./[1:N]; c0 = [alpha*2*pi/L,s]; A = toeplitz(c0); [V,evals] = eigs(A, 1); [emax,imax] = max(abs(diag(evals))); w = abs(V(:,imax)); w = w.'; w = w / max(w); % plotWindow(w, "DPSS", "DPSS", '\alpha = 3', "alpha = 3") plotWindow(w, "DPSS", "DPSS", "α = 3", "alpha = 3") N = 2^16; % Restore original N n = 0:N; L = length(n); % Window length %======================================================================== alpha = 2; w = besseli(0,pi*alpha*sqrt(1-(2*n/N -1).^2))/besseli(0,pi*alpha); % plotWindow(w, "Kaiser", "Kaiser", '\alpha = 2', "alpha = 2") plotWindow(w, "Kaiser", "Kaiser", "α = 2", "alpha = 2") %======================================================================== alpha = 3; w = besseli(0,pi*alpha*sqrt(1-(2*n/N -1).^2))/besseli(0,pi*alpha); % plotWindow(w, "Kaiser", "Kaiser", '\alpha = 3', "alpha = 3") plotWindow(w, "Kaiser", "Kaiser", "α = 3", "alpha = 3") %======================================================================== alpha = 5; % Attenuation in 20 dB units w = chebwin(L, alpha * 20).'; % plotWindow(w, "Dolph-Chebyshev", "Dolph-Chebyshev", '\alpha = 5', "alpha = 5") plotWindow(w, "Dolph–Chebyshev", "Dolph-Chebyshev", "α = 5", "alpha = 5") %======================================================================== w = ultrwin(L, -.5, 100, 'a')'; % \mu works correctly in actual file, but not in thumbnail versions % plotWindow(w, "Ultraspherical", "Ultraspherical", '\mu = -0.5', "mu = -0.5") plotWindow(w, "Ultraspherical", "Ultraspherical", "μ = -0.5", "mu = -0.5") %======================================================================== tau = (L/2); w = exp(-abs(n-N/2)/tau); % plotWindow(w, "Exponential", "Exponential", '\tau = N/2', "half window decay") plotWindow(w, "Exponential", "Exponential", "τ = N/2", "half window decay") %======================================================================== tau = (L/2)/(60/8.69); w = exp(-abs(n-N/2)/tau); % plotWindow(w, "Exponential", "Exponential", '\tau = (N/2)/(60/8.69)', "60dB decay") plotWindow(w, "Exponential", "Exponential", "τ = (N/2)/(60/8.69)", "60dB decay") %======================================================================== w = 0.62 -0.48*abs(n/N -0.5) -0.38*cos(2*pi*n/N); plotWindow(w, "Bartlett-Hann", "Bartlett-Hann") %======================================================================== alpha = 4.45; epsilon = 0.1; t_cut = N * (0.5 - epsilon); t_in = n - N/2; T_in = abs(t_in); z_exp = ((t_cut - N/2) ./ (T_in - t_cut) + (t_cut - N/2) ./ (T_in - N/2)); sigma = (T_in < N/2) ./ (exp(z_exp) + 1); w = (1 * (T_in <= t_cut) + sigma .* (T_in > t_cut)) .* besseli(0, pi*alpha * sqrt(1 - (2 * t_in / N).^2)) / besseli(0, pi*alpha); % plotWindow(w, "Planck-Bessel", "Planck-Bessel", '\epsilon = 0.1, \alpha = 4.45', "epsilon = 0.1, alpha = 4.45") plotWindow(w, "Planck–Bessel", "Planck-Bessel", "ε = 0.1, α = 4.45", "epsilon = 0.1, alpha = 4.45") %======================================================================== alpha = 2; w = 0.5*(1 - cos(2*pi*n/N)).*exp( -alpha*abs(N-2*n)/N ); % plotWindow(w, "Hann-Poisson", "Hann-Poisson", '\alpha = 2', "alpha = 2") plotWindow(w, "Hann–Poisson", "Hann-Poisson", "α = 2", "alpha = 2") %======================================================================== w = sinc(2*n/N - 1); plotWindow(w, "Lanczos") %======================================================================== % optimized Nutall ak = [-1.9501232504232442 1.7516390954528638 -0.9651321809782892 0.3629219021312954 -0.0943163918335154 ... 0.0140434805881681 0.0006383045745587 -0.0009075461792061 0.0002000671118688 -0.0000161042445001]; n = -N/2:N/2; n = n/std(n); w = 1; for k = 1 : length(ak) % This is an array addition, which expands the dimension of w[] as needed, and the value "1" is replicated. w = w + ak(k)*(n.^(2*k)); endfor w = w/max(w); plotWindow(w, "GAP optimized Nuttall")
- change the SVG metadata title from "Gnuplot" to the body of the file name, and
- replace UNICODE characters with actual Greek letters, and
- replace Greek characters created by the Octave script with better-looking versions, and
- move the title and axis labels farther away from the graph to prevent overlap.
Perl code
#!/usr/bin/perl opendir (DIR, '.') or die $!; ## open the current directory , if error exit while ($file = readdir(DIR)) { ## read all the file names in the current directory $ext = substr($file, length($file)-4); ## get the last 4 letters of the file name if ($ext eq '.svg') { ## if the file extension is '.svg' print("$file\n"); ## print file name ($pre, $name) = split(" - ", substr($file, 0, length($file)-4)); ## split the filename in 2 @lines = (); ## dummy up an array open (INPUTFILE, "<", $file) or die $!; ## open up the file for reading while ($line = <INPUTFILE>) { ## loop through all the lines in the file $line =~ s/&/&/g; ## replace "&" with "&" , get rid of semicolon if ($line eq "<title>Gnuplot</title>\n") { ## if line is EXACTLY equal to "<.....>\n" then $line = '<title>Window function and its Fourier transform – '.$name."</title>"."\n"; ## set the line to a new value, – - is unicode for a dash ## the .$name. concatenates the strings together } ## end if @lines[0+@lines] = $line; ## append to the output array the value of the modified line } ## end loop close(INPUTFILE); ## close the input file open (OUTPUTFILE, ">", $file) or die $!; ## open the output file for ($t = 0; $t < @lines; $t++) { ## loop through the output array, printing out each line print(OUTPUTFILE $lines[$t]); } ## end loop close(OUTPUTFILE); ## close the output file } ## end if } ## end loop closedir (DIR); ## close the directory