SSS Theorem

TOPICS

Search

SSSTheorem

Specifying three sides uniquely determines a triangle whose area is given by Heron's formula,

K=sqrt(s(s-a)(s-b)(s-c)),

(1)

where

s=1/2(a+b+c)

(2)

is the semiperimeter of the triangle. Let R be the circumradius, then

K=(abc)/(4R).

(3)

Using the law of cosines

a^2=b^2+c^2-2bccosA

(4)

b^2=a^2+c^2-2accosB

(5)

c^2=a^2+b^2-2abcosC

(6)

gives the three angles as

A=cos^(-1)((b^2+c^2-a^2)/(2bc))

(7)

B=cos^(-1)((a^2+c^2-b^2)/(2ac))

(8)

C=cos^(-1)((a^2+b^2-c^2)/(2ab)).

(9)


See also

AAA Theorem, AAS Theorem, ASA Theorem, ASS Theorem, Heron's Formula, SAS Theorem, Semiperimeter, Triangle

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "SSS Theorem." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/SSSTheorem.html

Subject classifications