The th
Smarandache-Wellin number is formed from the Consecutive
Number Sequences obtained by concatenating of the digits of the first
primes. The first few are 2, 23, 235, 2357, 235711, ... (OEIS
A019518; Smith 1996, Mudge 1997). This sequence
converges to the digits of the Copeland-Erdős
constant.
Prime Smarandache-Wellin numbers are called Smarandache-Wellin primes.
See also
Consecutive Number Sequences, Copeland-Erdős Constant, Copeland-Erdős Constant Digits, Smarandache-Wellin Prime
Explore with Wolfram|Alpha
References
Crandall, R. and Pomerance, C. Prime Numbers: A Computational Perspective, 2nd ed. New York: Springer-Verlag, 2005.Ibstedt, H. "Smarandache Concatenated Sequences." Ch. 5 in Computer Analysis of Number Sequences. Lupton, AZ: American Research Press, pp. 75-79, 1998.Mudge, M. "Not Numerology but Numeralogy!" Personal Computer World, 279-280, 1997.Sloane, N. J. A. Sequence A019518 in "The On-Line Encyclopedia of Integer Sequences."Smith, S. "A Set of Conjectures on Smarandache Sequences." Bull. Pure Appl. Sci. 15E, 101-107, 1996.
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Smarandache-Wellin Number." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/Smarandache-WellinNumber.html