LessEqual—Wolfram Documentation

x<=y or xy

yields True if x is determined to be less than or equal to y.

x1x2x3

yields True if the form a nondecreasing sequence.

Details

Examples

open all close all

Basic Examples  (2)

Compare numbers:

Represent an inequality:

Scope  (9)

Numeric Inequalities  (7)

Inequalities are defined only for real numbers:

Compare rational numbers:

Approximate numbers that differ in at most their last eight binary digits are considered equal:

Compare an exact numeric expression and an approximate number:

Compare two exact numeric expressions; a numeric test may suffice to prove inequality:

Proving this inequality requires symbolic methods:

Symbolic and numeric methods used by LessEqual are insufficient to prove this inequality:

Use RootReduce to decide the sign of algebraic numbers:

Numeric methods used by LessEqual do not use sufficient precision to disprove this inequality:

RootReduce disproves the inequality using exact methods:

Increasing $MaxExtraPrecision may also disprove the inequality:

Symbolic Inequalities  (2)

Symbolic inequalities remain unevaluated, since x may not be a real number:

Use Refine to reevaluate the inequality assuming that x is real:

A symbolic inequality:

Use Reduce to find an explicit description of the solution set:

Use FindInstance to find a solution instance:

Use Minimize to optimize over the inequality-defined region:

Use Refine to simplify under the inequality-defined assumptions:

Properties & Relations  (12)

Possible Issues  (3)

Inequalities for machine-precision approximate numbers can be subtle:

The result is based on extra digits:

Arbitrary-precision approximate numbers do not have this problem:

Thanks to automatic precision tracking, LessEqual knows to look only at the first 10 digits:

In this case, inequality between machine numbers gives the expected result:

The extra digits in this case are ignored by LessEqual:

History

Introduced in 1988 (1.0) | Updated in 1996 (3.0)

Wolfram Research (1988), LessEqual, Wolfram Language function, https://reference.wolfram.com/language/ref/LessEqual.html (updated 1996).

Text

Wolfram Research (1988), LessEqual, Wolfram Language function, https://reference.wolfram.com/language/ref/LessEqual.html (updated 1996).

CMS

Wolfram Language. 1988. "LessEqual." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 1996. https://reference.wolfram.com/language/ref/LessEqual.html.

APA

Wolfram Language. (1988). LessEqual. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LessEqual.html

BibTeX

@misc{reference.wolfram_2025_lessequal, author="Wolfram Research", title="{LessEqual}", year="1996", howpublished="\url{https://reference.wolfram.com/language/ref/LessEqual.html}", note=[Accessed: 22-February-2026]}

BibLaTeX

@online{reference.wolfram_2025_lessequal, organization={Wolfram Research}, title={LessEqual}, year={1996}, url={https://reference.wolfram.com/language/ref/LessEqual.html}, note=[Accessed: 22-February-2026]}