polypeta
| Site Map | Polytopes | Dynkin Diagrams | Vertex Figures, etc. | Incidence Matrices | Index |
---- 6D ----
- quasiregulars
- (multi)prisms
- non-prismatic Wythoffians
- some non-convex Wythoffians
- some other non-convex uniform polypeta
- some convex segmentopeta
quasiregular polypeta (up)
| o3o3o3o3o3o | o3o3o3o3o4o | o3o3o *b3o3o3o | o3o3o3o3o *c3o |
x3o3o3o3o3o - hop o3x3o3o3o3o - ril o3o3x3o3o3o - bril |
x3o3o3o3o4o - gee o3x3o3o3o4o - rag o3o3x3o3o4o - brag o3o3o3x3o4o - brox o3o3o3o3x4o - rax o3o3o3o3o4x - ax |
x3o3o *b3o3o3o - hax o3x3o *b3o3o3o - brox o3o3o *b3x3o3o - brag o3o3o *b3o3x3o - rag o3o3o *b3o3o3x - gee |
x3o3o3o3o *c3o - jak o3x3o3o3o *c3o - rojak o3o3x3o3o *c3o - ram o3o3o3o3o *c3x - mo |
(multi)prisms of quasiregulars (and some beyond) (up)
| o3o3o o3o3o | o3o3o o3o4o | o3o3o o3o5o |
x3o3o x3o3o - tetdip x3o3o o3x3o - tetoct o3x3o o3x3o - octdip x3o3o x3x3o - tettut x3o3o x3o3x - tetco x3x3o x3x3o - tutdip x3x3x x3x3x - toedip |
x3o3o x3o4o - tetoct x3o3o o3x4o - tetco x3o3o o3o4x - tetcube o3x3o x3o4o - octdip o3x3o o3x4o - octco o3x3o o3o4x - octcube |
x3o3o x3o5o - tetike x3o3o o3x5o - tetid x3o3o o3o5x - tetdoe o3x3o x3o5o - octike o3x3o o3x5o - octid o3x3o o3o5x - octdoe |
| o3o4o o3o4o | o3o4o o3o5o | o3o5o o3o5o |
x3o4o x3o4o - octdip x3o4o o3x4o - octco x3o4o o3o4x - octcube o3x4o o3x4o - codip o3x4o o3o4x - cocube o3o4x o3o4x - ax o3o4x x3o4x - cubesirco o3x4x x3o4x - sircotic o3x4o x3x4o - cotoe x3x4o x3x4o - toedip |
x3o4o x3o5o - octike x3o4o o3x5o - octid x3o4o o3o5x - octdoe o3x4o x3o5o - coike o3x4o o3x5o - coid o3x4o o3o5x - codoe o3o4x x3o5o - cubike o3o4x o3x5o - cubid o3o4x o3o5x - cubedoe |
x3o5o x3o5o - ikedip x3o5o o3x5o - ikid x3o5o o3o5x - ikedoe o3x5o o3x5o - idodip o3x5o o3o5x - iddoe o3o5x o3o5x - dodoe |
| ono o3o3o3o | ono o3o3o4o | ono o3o3o5o |
x3o x3o3o3o - trapen x3o o3x3o3o - trarap x3o x3o3x3o - trasrip x3o x3o3o3x - traspid x3o x3x3x3o - tragrip x3x x3x3x3x - hagippid |
x3o x3o3o4o - trahex x3o o3x3o4o - trico x3o o3o3x4o - trarit x3o o3o3o4x - tratess x3o o3x3x4o - tratah x3x x3x3x4o - hatico |
x3o x3o3o5o - trex x3o o3x3o5o - trarox x3o o3o3x5o - trarahi x3o o3o3o5x - trahi |
x4o x3o3o3o - squapen x4o o3x3o3o - squarap x4o x3x3x3x - squagippid |
x4o x3o3o4o - squahex x4o o3x3o4o - squico x4o o3o3x4o - squarit x4o o3o3o4x - ax |
x4o x3o3o5o - squex x4o o3x3o5o - squarox x4o o3o3x5o - squarahi x4o o3o3o5x - squahi |
xno x3o3o3o - n,pen-dip xno o3x3o3o - n,rap-dip |
xno x3o3o4o - n,hex-dip xno o3x3o4o - n,ico-dip xno o3o3x4o - n,rit-dip xno o3o3o4x - n,tes-dip |
xno x3o3o5o - n,ex-dip xno o3x3o5o - n,rox-dip xno o3o3x5o - n,rahi-dip xno o3o3o5x - n,hi-dip |
| ono o3o4o3o | ono o3o3o *d3o | ono omo oko |
x3o x3o4o3o - trico x3o o3x4o3o - trarico x3x x3x4o3o - hatico |
x3o x3o3o *d3o - trahex x3o o3x3o *d3o - trico x3o x3o3x *d3o - trarit x3x x3x3x *d3x - hatico |
x3o x3o x3o - trittip x3o x3o x4o - titstip x3o x3o x6o - tithtip x3o x4o x4o - tratess x4o x4o x4o - ax x4o x6o x6o - shihtip x5o x5o x5o - pettip x6o x6o x6o - hittip |
x4o x3o4o3o - squico x4o o3x4o3o - squarico |
x4o x3o3o *d3o - squahex x4o o3x3o *d3o - squico x4o x3o3x *d3o - squarit |
xno xno x4o - n,n,4-tip xno x4o x4o - n,tes-dip |
xno x3o4o3o - n,ico-dip xno o3x4o3o - n,rico-dip |
xno x3o3o *d3o - n,hex-dip xno o3x3o *d3o - n,ico-dip |
xno xmo xko - n,m,k-tip xno xno xko - n,n,k-tip xno xno xno - n,n,n-tip |
| o o3o3o3o3o | o o3o3o3o4o | o o3o3o *c3o3o |
x x3o3o3o3o - hixip x o3x3o3o3o - rixip x o3o3x3o3o - dotip x x3x3o3o3o - tixip x x3o3x3o3o - sarxip x x3o3o3x3o - spixip x x3o3o3o3x - scadip x x3o3x3o3x - cardip x x3x3x3x3x - gocadip |
x x3o3o3o4o - taccup x o3x3o3o4o - ratip x o3o3x3o4o - nitip x o3o3o3x4o - rinnip x o3o3o3o4x - ax x x3x3x3x4o - gippitip x x3x3x3x4x - gacnetip |
x x3o3o *c3o3o - hinnip x o3x3o *c3o3o - nitip x o3o3o *c3x3o - ratip x o3o3o *c3o3x - taccup x x3o3o *c3o3x - siphinnip x x3x3x *c3x3x - gippitip |
| o ono o3o3o | o ono o3o4o | o ono o3o5o |
x x3o x3o3o - tratepe x x3o o3x3o - trope x xno x3o3o - n,tet-dippip x xno o3x3o - n,oct-dippip x x3x x3x3x - hatope |
x x3o x3o4o - trope x x3o o3x4o - tracope x x3o o3o4x - tratess x xno x3o4o - n,oct-dippip x xno o3x4o - n,co-dippip x xno o3o4x - n,tes-dip |
x x3o x3o5o - trikep x x3o o3x5o - tridep x x3o o3o5x - tradope x xno x3o5o - n,ike-dippip x xno o3x5o - n,id-dippip x xno o3o5x - n,doe-dippip |
| o o o3o3o3o | o o o3o3o4o | o o o3o3o5o |
x x x3o3o3o - squapen x x o3x3o3o - squarap x x x3x3x3x - squagippid |
x x x3o3o4o - squahex x x o3x3o4o - squico x x o3o3x4o - squarit x x o3o3o4x - ax |
x x x3o3o5o - squex x x o3x3o5o - squarox x x o3o3x5o - squarahi x x o3o3o5x - squahi |
| o o o3o4o3o | o o o3o3o *d3o | o o ono omo |
x x x3o4o3o - squico x x o3x4o3o - squarico |
x x x3o3o *d3o - squahex x x o3x3o *d3o - squico x x x3o3x *d3o - squarit |
x x x3o x3o - 3,3,4-tip x x xno xmo - 4,n,m-tip x x xno xno - 4,n,n-tip |
| o o o o3o3o | o o o o3o4o | o o o o3o5o |
x x x x3o3o - tetcube x x x o3x3o - octcube |
x x x x3o4o - octcube x x x o3x4o - cocube x x x o3o4x - ax |
x x x x3o5o - cubike x x x o3x5o - cubid x x x o3o5x - cubedoe |
| o o o o ono | o o o o o o | |
x x x x x3o - tratess x x x x xno - n,tes-dip |
x x x x x x - ax |
other non-prismatic Wythoffian polypeta (up)
| o3o3o3o3o3o | o3o3o3o3o4o |
x3x3o3o3o3o - til x3o3x3o3o3o - sril x3o3o3x3o3o - spil x3o3o3o3x3o - scal x3o3o3o3o3x - staf (stef) o3x3x3o3o3o - batal o3x3o3x3o3o - sabril o3x3o3o3x3o - sibpof o3o3x3x3o3o - fe |
x3x3o3o3o4o - tag x3o3x3o3o4o - srog x3o3o3x3o4o - spog x3o3o3o3x4o - scag x3o3o3o3o4x - stoxog o3x3x3o3o4o - botag o3x3o3x3o4o - siborg o3x3o3o3x4o - sobpoxog o3x3o3o3o4x - scox o3o3x3x3o4o - xog o3o3x3o3x4o - saborx o3o3x3o3o4x - spox o3o3o3x3x4o - botox o3o3o3x3o4x - srox o3o3o3o3x4x - tox |
x3x3x3o3o3o - gril x3x3o3x3o3o - patal x3x3o3o3x3o - catal x3x3o3o3o3x - tocal x3o3x3x3o3o - pril x3o3x3o3x3o - cral (scral) x3o3x3o3o3x - topal (stopal) x3o3o3x3x3o - copal o3x3x3x3o3o - gabril o3x3x3o3x3o - bapril |
x3x3x3o3o4o - grog x3x3o3x3o4o - potag x3x3o3o3x4o - catog x3x3o3o3o4x - tacox x3o3x3x3o4o - prog x3o3x3o3x4o - crag (scrag) x3o3x3o3o4x - tapox (stapox) x3o3o3x3x4o - copog x3o3o3x3o4x - topag (stopag) x3o3o3o3x4x - tacog o3x3x3x3o4o - gaborg o3x3x3o3x4o - boprax o3x3x3o3o4x - copox o3x3o3x3x4o - boprag o3x3o3x3o4x - crax (scrax) o3x3o3o3x4x - catax o3o3x3x3x4o - gaborx o3o3x3x3o4x - prox o3o3x3o3x4x - potax o3o3o3x3x4x - grox |
x3x3x3x3o3o - gapil x3x3x3o3x3o - cagral (gacral) x3x3x3o3o3x - togral (gotral) x3x3o3x3x3o - captal x3x3o3x3o3x - tocral (stocral) x3x3o3o3x3x - tactaf x3o3x3x3x3o - copril x3o3x3x3o3x - taporf (staporf) o3x3x3x3x3o - gibpof |
x3x3x3x3o4o - gopog x3x3x3o3x4o - cagorg (gacorg) x3x3x3o3o4x - togrig (gotrig) x3x3o3x3x4o - captog x3x3o3x3o4x - tocrax (stocrax) x3x3o3o3x4x - tactaxog x3o3x3x3x4o - coprag x3o3x3x3o4x - tiprixog (stiprixog) x3o3x3o3x4x - tocrag (stocrag) x3o3o3x3x4x - togrix (gotrix) o3x3x3x3x4o - gobpoxog o3x3x3x3o4x - coprix o3x3x3o3x4x - captix o3x3o3x3x4x - cagorx (gacorx) o3o3x3x3x4x - gippox |
x3x3x3x3x3o - gacal x3x3x3x3o3x - tagopal x3x3x3o3x3x - tacogral (gatocral) |
x3x3x3x3x4o - gocog x3x3x3x3o4x - tagpog (gatpog) x3x3x3o3x4x - tecagorg (gatecorg) x3x3o3x3x4x - tocagrax (gatocrax) x3o3x3x3x4x - tagpox (gatpox) o3x3x3x3x4x - gocax |
x3x3x3x3x3x - gotaf |
x3x3x3x3x4x - gotaxog |
| o3o3o *b3o3o3o | o3o3o3o3o *c3o |
x3x3o *b3o3o3o - thax x3o3x *b3o3o3o - rax x3o3o *b3x3o3o - sirhax x3o3o *b3o3x3o - sophax x3o3o *b3o3o3x - sochax o3x3o *b3x3o3o - xog o3x3o *b3o3x3o - siborg o3x3o *b3o3o3x - spog o3o3o *b3x3x3o - botag o3o3o *b3x3o3x - srog o3o3o *b3o3x3x - tag |
x3x3o3o3o *c3o - tojak x3o3x3o3o *c3o - sirjak x3o3o3x3o *c3o - shopjak x3o3o3o3x *c3o - trim (cacam, tram, mak) x3o3o3o3o *c3x - hejak o3x3x3o3o *c3o - botajik o3x3o3x3o *c3o - barm (scram, bram, remak, kram) o3x3o3o3o *c3x - harjak (trojak) o3o3x3o3o *c3x - tim |
x3x3x *b3o3o3o - botox x3x3o *b3x3o3o - girhax x3x3o *b3o3x3o - pithax x3x3o *b3o3o3x - cathix x3o3x *b3x3o3o - saborx x3o3x *b3o3x3o - sobpoxog x3o3x *b3o3o3x - scag x3o3o *b3x3x3o - prohax x3o3o *b3x3o3x - crohax (scrohax) x3o3o *b3o3x3x - cophix o3x3o *b3x3x3o - gaborg o3x3o *b3x3o3x - prog o3x3o *b3o3x3x - potag o3o3o *b3x3x3x - grog |
x3x3x3o3o *c3o - girjak x3x3o3x3o *c3o - hopitjak (hoptijak) x3x3o3o3x *c3o - catjak (detidjik) x3x3o3o3o *c3x - hotjak x3o3x3x3o *c3o - haprojak x3o3x3o3x *c3o - sabrim (pirm, sirmak, skorm) x3o3x3o3o *c3x - shorjak x3o3o3x3o *c3x - spojak x3o3o3o3x *c3x - spam (skopam) o3x3x3x3o *c3o - bitem (gacram, botam, kobtam) o3x3x3o3o *c3x - titajak (hibtajak, totajik) o3x3o3x3o *c3x - sram (skobram, skabram) |
x3x3x *b3x3o3o - gaborx x3x3x *b3o3x3o - boprag x3x3x *b3o3o3x - copog x3x3o *b3x3x3o - gophax x3x3o *b3x3o3x - cagrohax (crothax, gacrohax) x3x3o *b3o3x3x - capthix x3o3x *b3x3x3o - boprax x3o3x *b3x3o3x - crag (scrag) x3o3x *b3o3x3x - catog x3o3o *b3x3x3x - caprohax o3x3o *b3x3x3x - gopog |
x3x3x3x3o *c3o - ghopjak x3x3x3o3x *c3o - cograjik (gocrajik, detkadij) x3x3x3o3o *c3x - ghorjak x3x3o3x3x *c3o - titam (cacram, totam, tomak, katom) x3x3o3x3o *c3x - potjak x3x3o3o3x *c3x - hictijik (badtidjik) x3o3x3x3o *c3x - projak x3o3x3o3x *c3x - patom (-prom, kaprom) o3x3x3x3o *c3x - gram (gakbram) |
x3x3x *b3x3x3o - gobpoxog x3x3x *b3x3o3x - coprag x3x3x *b3o3x3x - captog x3x3o *b3x3x3x - gochax x3o3x *b3x3x3x - cagorg (gacorg) |
x3x3x3x3x *c3o - gabrim (prarm, girmak, gokorm) x3x3x3x3o *c3x - gapjak x3x3x3o3x *c3x - hocgarjik (ghocarjik, badetkadij) x3x3o3x3x *c3x - prom (-patom, kaptom) |
x3x3x *b3x3x3x - gocog |
x3x3x3x3x *c3x - gopam (gakpam) |
some non-convex Wythoffian polypeta (up)
| hopic | demiaxic | ||
3 3 3 3 3/2 o---o---o---o---o---o |
3 3 3 3
o---o---o---o---o
3 \ / 3/2
o
|
3 3 3 3
o---o---o---o---o
3 \ / 3/2
o
|
3 3 3
o---o---o---o
3 | | 3
o---o
3/2
|
| o3o3o3o3o3/2o | o3o3o3o3o3o3/2*d | o3o3o3o3o3/2o3*d | o3o3o3o3o3/2o3*c |
x3o3o3o3o3/2x - 2firl (?) ... |
o3o3o3o3x3x3/2*d - fohaf ... |
... |
x3o3o3o3o3/2o3*c - 2thox (?) ... |
| axic | |||
3 3 3 3 4/3 o---o---o---o---o---o |
3 3 3 3
o---o---o---o---o
4 \ / 4/3
o
|
3 3 3 3
o---o---o---o---o
4 \ / 4/3
o
|
3 3
o---o---o
3 | | 3
o---o---o
3 3/2
|
| o3o3o3o3o4/3o | o3o3o3o3o4o4/3*d | o3o3o3o3o4/3o4*d | o3o3o3o3o3o3/2* |
x3o3o3o3o4/3o - gee (convex) o3x3o3o3o4/3o - rag (convex) o3o3x3o3o4/3o - brag (convex) o3o3o3x3o4/3o - brox (convex) o3o3o3o3x4/3o - rax (convex) o3o3o3o3o4/3x - ax (convex) x3x3o3o3o4/3o - tag (convex) x3o3x3o3o4/3o - srog (convex) x3o3o3x3o4/3o - spog (convex) x3o3o3o3x4/3o - scag (convex) x3o3o3o3o4/3x - quitoxog o3x3x3o3o4/3o - botag (convex) o3x3o3x3o4/3o - siborg (convex) o3x3o3o3x4/3o - sobpoxog (convex) o3x3o3o3o4/3x - quacox o3o3x3x3o4/3o - xog (convex) o3o3x3o3x4/3o - saborx (convex) o3o3x3o3o4/3x - quapox o3o3o3x3x4/3o - botox (convex) o3o3o3x3o4/3x - qrax o3o3o3o3x4/3x - quotox x3x3x3o3o4/3o - grog (convex) x3x3o3x3o4/3o - potag (convex) x3x3o3o3x4/3o - catog (convex) x3x3o3o3o4/3x - x3o3x3x3o4/3o - prog (convex) x3o3x3o3x4/3o - crag (convex) x3o3x3o3o4/3x - x3o3o3x3x4/3o - copog (convex) x3o3o3x3o4/3x - x3o3o3o3x4/3x - quotacog o3x3x3x3o4/3o - gaborg (convex) o3x3x3o3x4/3o - boprax (convex) o3x3x3o3o4/3x - o3x3o3x3x4/3o - boprag (convex) o3x3o3x3o4/3x - o3x3o3o3x4/3x - quactix o3o3x3x3x4/3o - gaborx (convex) o3o3x3x3o4/3x - o3o3x3o3x4/3x - quoptax o3o3o3x3x4/3x - gaqrox x3x3x3x3o4/3o - gopog (convex) x3x3x3o3x4/3o - cagorg (convex) x3x3x3o3o4/3x - x3x3o3x3x4/3o - captog (convex) x3x3o3x3o4/3x - x3x3o3o3x4/3x - quitcatxog x3o3x3x3x4/3o - coprag (convex) x3o3x3x3o4/3x - x3o3x3o3x4/3x - quitcrag x3o3o3x3x4/3x - quatogrix o3x3x3x3x4/3o - gobpoxog (convex) o3x3x3x3o4/3x - o3x3x3o3x4/3x - quacpatox o3x3o3x3x4/3x - quacagorx o3o3x3x3x4/3x - gaquapox x3x3x3x3x4/3o - gocog (convex) x3x3x3x3o4/3x - x3x3x3o3x4/3x - quitecgorg x3x3o3x3x4/3x - quitcagrix x3o3x3x3x4/3x - quatagpox o3x3x3x3x4/3x - gaquacox x3x3x3x3x4/3x - gaquitxog |
o3o3o3x3o4x4/3*d - wavaxixog o3o3o3o3x4x4/3*d - soxaxog x3o3o3o3x4x4/3*d - rackix ... |
o3o3o3x3o4/3x4*d - rawvax o3o3o3o3x4/3x4*d - goxaxog x3o3o3o3x4/3x4*d - cakix ... |
x3x3o3o3o3o3/2*a - forx o3x3x3o3o3o3/2*a - forx o3o3x3x3o3o3/2*a - forx ... |
| jakic | |||
3 3 3
o---o---o---o
3 \ / 3/2
o---o
3
|
3 3 3
o---o---o---o
3 \ / 3
o---o
3/2
|
3 3 3
o---o---o---o
3/2 \ / 3
o---o
3
| |
x3o3o3o3/2o3o3*b - 2kaje ... |
x3o3o3o3o3/2o3*b - 2kaje ... |
x3o3o3o3o3o3/2*b - 2kaje ... | |
| some (multi)prisms | |||
x3o3o3o x4/3x - stopen ... |
x3o3o o3x4/3x - tetquith ... |
x3o3o o3x4x4/3*d - tetsocco ... |
x3o3o o3x4/3x4*d - tetgocco ... |
x3o o3o3x4/3x - traquitit ... |
x3o o3o3x4x4/3*d - trasteth ... |
x3o o3o3x4/3x4*d - tragittith ... |
x o3o3o3x4/3x - quittinip ... |
x o3o3o3x4x4/3*d - sinnontip ... |
x o3o3o3x4/3x4*d - ginnontip ... | ||
other non-convex uniform polypeta (up)
Warning: The following list in fact just contains the so far provided polypeta, which were not listed above. Whether those indeed are non-kaleidoscopical or just ask for some more complicate Dynkin diagram, in fact has not been checked so far.
*) those alternations cannot be made uniform, i.e. are isogonal only.