|
(1) |
The Entringer numbers
(OEIS A008281) are the number of permutations
of
,
starting with
,
which, after initially falling, alternately fall then rise. The Entringer numbers
are given by
together with the recurrence relation
|
(4) |
A suitably arranged number triangle of these numbers is known as the Seidel-Entringer-Arnold triangle.
The numbers
are the secant and tangent
numbers given by the Maclaurin series
|
(5) |
They have closed form
|
(6) |
. where
is an Euler number and
is a Bernoulli number.
See also
Alternating Permutation, Boustrophedon Transform, Euler Zigzag Number, Permutation, Secant Number, Seidel-Entringer-Arnold Triangle, Tangent Number, Zag Number, Zig Number
Explore with Wolfram|Alpha
References
Bauslaugh, B. and Ruskey, F. "Generating Alternating Permutations Lexographically." BIT 80, 17-26, 1990.Entringer, R. C. "A Combinatorial Interpretation of the Euler and Bernoulli Numbers." Nieuw Arch. Wisk. 14, 241-246, 1966.Millar, J.; Sloane, N. J. A.; and Young, N. E. "A New Operation on Sequences: The Boustrophedon Transform." J. Combin. Th. Ser. A 76, 44-54, 1996.Poupard, C. "De nouvelles significations enumeratives des nombres d'Entringer." Disc. Math. 38, 265-271, 1982.Ruskey, F. "Information of Alternating Permutations." http://www.theory.csc.uvic.ca/~cos/inf/perm/Alternating.html.Sloane, N. J. A. Sequences A000111/M1492 and A008281 in "The On-Line Encyclopedia of Integer Sequences."
Referenced on Wolfram|Alpha
Cite this as:
Weisstein, Eric W. "Entringer Number." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/EntringerNumber.html